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Abstract The standard cube mapping technique im-

plemented in graphics pipelines, while useful in many

scenarios, has signi�cant shortcomings for important

application areas in interactive Computer Graphics, e.g.

dynamic environment mapping, omnidirectional shadow

maps, or planetary-scale terrain rendering. Many alter-

native mapping methods have been proposed over the

years with the purpose of reducing area and/or angular

distortions. In this paper, we give an overview of meth-

ods suitable for interactive applications, and analyze

their properties. Furthermore, we evaluate a set of ad-

ditional transformation functions and identify a simple

new method with favorable distortion properties.

Keywords Cube Maps · Environment Maps

1 Introduction

Mappings between a sphere surface and a planar sur-

face have been studied for centuries, starting with world

maps and celestial maps [26]. Since the sphere surface

is not developable, such mappings always exhibit either

area or angular distortions, and often both. Equal-area

mappings preserve area ratios, at the cost of large angu-

lar distortions, and conformal mappings preserve angles

locally, at the cost of large area distortions.
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Mapping the complete sphere surface to a circle or

square results in strong distortions [15]. Mapping por-

tions of the sphere surface to corresponding faces of a

polyhedron signi�cantly lowers these distortions as the

number of faces grows [27], at the cost of interruptions

at the face boundaries that often manifest themselves

as C1 discontinuities of the mapping function.

In Computer Graphics, especially in interactive ap-

plications, using a cube as the polyhedron is of par-

ticular interest, since the number of faces is low and

each face is a square, which eases the management of

image-like data as well as the application of hierarchical

methods such as quad trees or mipmaps. The cube map

method implemented by standard graphics pipelines is

the simplest form of mapping between cube and sphere

surface. It is equivalent to Gnomonic projection for each

cube face, and exhibits strong area and angular distor-

tions.

Application areas for mappings between cube and

sphere surfaces in interactive Computer Graphics in-

clude dynamic environmental maps for illumination [12]

and shadow computations [25], planetary-scale terrain

rendering [6], and procedural texturing [32]. Though

these areas seem diverse, they all map image-like data

that is available on a sphere surface to a cube surface,

and during rendering sample that cube surface to re-

construct the original sphere surface data. In the case

of environment mapping, the data on the sphere sur-

face is given by in�nite views in all directions from a

single point. In the case of planetary rendering or pro-

cedural texturing, the data is directly associated with a

sphere surface. In both cases, the methods for forward

mapping (sphere to cube) and inverse mapping (cube

to sphere) are the same.

In all the aforementioned application areas, alterna-

tives to the standard cube map have been proposed to
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avoid its distortion problems: with reduced map distor-

tions, lower cube map resolutions can be used to achieve

a comparable sampling quality during rendering, result-

ing in lower memory consumption and computational

costs.

This paper gives an overview of the methods that

have been proposed, with a focus on applications in

interactive Computer Graphics. Formulas for forward

and inverse mapping are given, and the methods are

analyzed and compared regarding key properties. Fur-

thermore, a new method is identi�ed in a set of can-

didate methods inspired by previous approaches. This

new method combines simplicity with favorable distor-

tion properties.

Sec. 3 details the needs of example application ar-

eas and resulting requirements for cube mapping meth-

ods. Sec. 4 categorizes the known mapping methods

and provides implementation details. Sec. 5 provides

numerical analysis results for relevant methods. Sec. 6

concludes with recommendations. The supplementary

material contains C++ source code that implements

all mapping and analysis methods used in this paper.

2 Related Work

In this paper we focus on mapping methods for use

in interactive Computer Graphics applications, specif-

ically those that sample cube maps for rendering pur-

poses. This requires that the mapping function is con-

tinuous along all cube edges, which excludes e.g. the

equal-area mapping method proposed by Arvo [1] since

it exhibits discontinuities along several cube edges [32].

Furthermore, the subdivision of the sphere into six area

that are subsequently mapped to cube faces must match

the standard cube map subdivision so that common

graphics pipeline functionality can be leveraged to ac-

cess and �lter cube maps. This excludes the HEALPix

cube map scheme [4] and variants [31], and the Isocube

map [30], which use six areas of equal size but di�ering

shape (polar versus equatorial areas).

Furthermore, we exclude methods that have pro-

hibitively high computational costs or require iterative

approximations. This exclusion especially a�ects map-

ping methods that are exactly equal-area or confor-

mal: equal-area mappings require iterative approxima-

tions [27,11] or complex and costly mathematical ex-

pressions [24] in either the forward or inverse map-

ping (the QSC method described in Sec. 4.2, despite

its complexity, is the cheapest equal-area method and

is included here because it has been used in planetary

terrain rendering), and conformal mappings are based

on Jacobian elliptic functions [18] or Taylor series ap-

proximations thereof [22]. Other a�ected mappings in-

clude the method used in the Outerra planetary 3D

engine [13] which requires iterative computations [6],

the original COBE method [5] which su�ers from in-

version precision problems [3,6], and the polynomial

and COBE-variant methods proposed by Zucker and

Higashi which only achieve acceptable inversion preci-

sion using iterative re�nement methods [32].

The methods presented in this paper provide trade-

o�s between area and angular distortions, while keeping

complexity and computational costs low.

Zucker and Higashi compared a few of the methods

described in this paper with respect to area distortions

and computational costs, but did not consider angular

distortions [32]. We consider angular distortions, too,

because their impact on sampling quality is not negli-

gible [28,14,12,6]. Furthermore, while Zucker and Hi-

gashi aimed to minimize the area distortion RSME, we

aim to minimize the maximum distortion errors, i.e. to

optimize the worst case behaviour.

A di�erent small subset of the methods described

in this paper was compared by Lambers and Kolb [16]

and Dimitrijevi¢ et al. [6], but with a strong focus on

the needs of planetary-scale terrain rendering. Conse-

quently, Dimitrijevi¢ et al. apply quality measures that

were derived from a method to use textures in this con-

text. In contrast, we address a more general applica-

tion �eld and therefore use more general quality mea-

surement methods based on the standard analysis of

Tissot's Indicatrix [26].

We include additional methods from the �eld of

environment mapping into our analysis (Continuous-

Cube [10] and UniCube [12]), and we systematically

evaluate a set of new methods inspired by previous

approaches, which have favorable distortion properties

while being simple to implement and cheap to compute.

3 Application Area Requirements

Gathering of information from a cube map works simi-

larly for all application areas. Sampling a standard cube

map is typically done by specifying a lookup vector d.

From this vector, the cube face and the coordinates on

that face are easily determined. Transforming a lookup

vector d from standard cube map space to one of the

alternative cube map spaces described in Sec. 4 requires

the forward transformation function f .

Application requirements di�er in the cube map cre-

ation step. For applications in pseudorandom sample

point distribution [32] or in planetary terrain rendering

where the cube map is created by sampling image-like

data given in some other map space [16], the inverse

transformation f−1 is needed: for each sample point in
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the chosen cube map space, �rst the standard cube map

space coordinates are computed using f−1, and these

are then transformed to the input map space to sam-

ple the original data. In this case, it is important that

the inverse of f is numerically precise to avoid sampling

at wrong positions during the rendering stage. This is

why we excluded methods relying on iterative approxi-

mations.

If, on the other hand, the cube map is created by

rendering geometry into the cube faces, as in dynamic

environment mapping [12] or for omnidirectional shadow

maps, then only the forward transformation f is re-

quired. When rendering into a cube face, the x and y

components of the normalized device coordinates are

equivalent to the standard cube map coordinates for

the current cube face, and accordingly can be trans-

formed to an alternative cube map space using the for-

ward transformation f in a vertex shader.

The problem with this approach is that straight

lines do not map to straight lines anymore, as if one

would render onto a curved surface instead of a plane [8].

Similar problems arise with parabolic maps for shadow

mapping [25] or with lens distortion rendering via ge-

ometry preprocessing [17]. Since the error that is intro-

duced grows with the screen space line length, �nely

tessellated geometry in the scene is required to keep

that error small. Another problem, related to the �rst

one, is that straight lines that cross cube faces may ap-

pear to be discontinuous. The remedy proposed by Ho

et al. for their Unicube method [12] can be applied to

any of the mapping methods listed in this paper.

In interactive Computer Graphics applications, the

function f is typically implemented in a shader and

should therefore be cheap to compute. To achieve good

sampling quality, area distortions should be low. An-

gular distortions should not be too high either since

they also a�ect sampling quality [28,14,12,6]. It there-

fore makes sense to chose a method with low maximum

area distortion error and acceptable angular distortions

to guarantee a minimum sampling quality.

4 Cube Map Methods

In this section, we describe all methods in detail, start-

ing with the standard cube map as implemented in

graphics pipelines. Subsequent methods are listed in

chronological order.

Analogous to Zucker and Higashi [32], we formulate

all mapping methods as modi�cations of the standard

cube map approach. This allows to leverage the hard-

ware accelerated graphics pipeline functionality to get

cube map coordinates that then only need to be ad-

justed.

Fig. 1 Gnomonic projection (left) use even sample distances
on the cube (blue), resulting in uneven sample distances on
the sphere (red). With an adjustment function (right), sample
distances are more evenly distributed on the sphere.

4.1 Standard Cube Map

The standard cube map implemented in most graph-

ics pipelines was proposed by Greene [9]. It provides

a mapping between the unit sphere and the unit cube

surfaces by applying Gnomonic projection centered on

each cube face, i.e. on the cartesian coordinate axes:

sphere surface coordinates (x, y, z) are to mapped to

coordinates (u, v) ∈ [−1,+1]2 on cube face i ∈ 0, . . . , 5,

with i corresponding to +x,−x,+y,−y,+z,−z.

A great advantage of the standard cube map is that

cube maps can be easily created in standard graphics

pipelines by rendering one image for each cube side.

This is equivalent of shooting rays from the origin to

form equidistant grids on the cube faces, and mapping

the intersections with the cube and sphere surfaces to

each other. See the left side of Fig. 1.

Gnomonic projection is known to su�er from area

and angular distortions that grow rapidly with increas-

ing distance from the projection center [26] (in our case,

the centers of each cube face). The alternative mappings

described in the remainder of this section all strive to

reduce these distortions. However, as a consequence,

the creation of cube maps by rendering images becomes

more complex; see Sec. 3 for details.

We describe each method in terms of modifying the

standard cube map coordinates (u, v) on one cube face

to arrive at new coordinates (u′, v′) on the same cube

face, either using a univariate function f : [−1, 1] →
[−1, 1] applied equally to both u and v, or using a bi-

variate function f : [−1, 1]2 → [−1, 1]2 applied to (u, v).

In practice, univariate functions f can be applied

to all components of the vector d
max |dx|,|dy|,|dz| , where

d is the cube map lookup direction. This works since

f(−1) = −1 and f(1) = 1, so only the cube face coor-

dinates are actually modi�ed [12].
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4.2 Quadrilateralized Spherical Cube

O'Neill and Laubscher [21] developed the Quadrilat-

eralized Spherical Cube (QSC) model based on previ-

ous work by Chan and O'Neill [5]. They inscribed a

cube to a sphere and de�ned hierarchical structures on

each cube side for data storage. For that purpose, they

designed the QSC projection to be equal-area and at

the same time limit angular distortions. In Computer

Graphics, QSC has been used in planetary terrain ren-

dering [16]. Although its computation is comparably

complex and costly, we include this method here since

it is the only known equal-area method with an analyt-

ical inverse.

f

(
u

v

)
=tan(ν)

(
cos(µ)

sin(µ)

)
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ϕ =cos−1
(

1√
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)
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(
12

π

)
(
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(
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))
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)
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(
1
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))
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√
1− cos(ϕ)

cos2(µ)t

f−1
(
u′

v′

)
=tan(ϕ)

(
sin(θ)

− cos(θ)

)
,with

tan(ν) =
√
u′2 + v′2

µ =atan2(v′, u′)

θ =tan−1

(
sin
(
π
12 tan(µ)

)
cos
(
π
12 tan(µ)

)
− 1√

2

)

t =1− cos

(
tan−1

(
1

cos(θ)

))
ϕ =cos−1(1− cos2(µ) tan2(ν)t)

(1)

The above formulae assume θ ∈ [−π4 ,
π
4 ], i.e. they apply

only to one quarter of a cube face. The other quarters

are handled by rotating them into the quarter of de�ni-

tion. This introduces C1 discontinuities at the cube face
diagonals. While this method exhibits no area distor-

tions, the average angular distortions of this equal-area

method are quite strong. However, the maximum angu-

lar distortion error is lower than for all other methods.

4.3 Tangent Adjustment

The tangent adjustment of the standard cube map mod-

i�es the cube map coordinates in the following way:

f(w) =
π

4
tan−1(w)

f−1(w′) = tan
(
w′
π

4

) (2)

This method has been rediscovered repeatedly. In

the context of Computer Graphics, it was used by Ler-

bour et al. for planetary terrain rendering [19] and by

Bitterli et al. in dynamic environment mapping [2]. Ear-

lier uses of the method can be found in other �elds [22,

23].

The motivation for this method is that points on the

sphere are distributed more evenly, thereby reducing

distortions. See Fig. 1.

Zucker and Higashi introduce a parameter c [32]:

f(w) =
tan−1(cw)

tan−1(c)

f−1(w′) =
tan(w′ tan−1(c))

c

They numerically �nd c ≈ 1.1823 to be optimal in terms

of area distortion RMSE reduction, while Eq. 2 uses

c = 1.

4.4 Nowell's Method

Nowell devised a mapping from cube surface to sphere

surface based on cartesian coordinates [20,29]. The for-

mulas below assume that a given point (x, y, z) on the

sphere surface maps to (u, v) on the cube face at x = 1;

the other faces are handled by symmetry.

f(x, y, z) =

(
sgn(y)√

2

√
t+ 2y2 − 2z2 + 3

sgn(z)√
2

√
t− 2y2 + 2z2 + 3

)
,with

t = −
√

(2z2 − 2y2 − 3)2 − 24y2

f−1(u′, v′) =


√
1− u′2

2 −
v′2

2 + u′2v′2

3

u′
√

1−v′2
2 + v′2

3

v′
√

1−u′2
2 + u′2

3


(3)

This method has been used in environment map-

ping [29]. Its area and angular distortions are a clear im-

provement over standard cube maps, but better meth-

ods exist. Furthermore, the formulation in terms of carte-

sian coordinates complicates its application in a graph-

ics pipeline because the hardware support for cube map-

ping cannot be used (or has to be undone).
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4.5 Continuous Cube

The Continuous Cube method was introduced by Grimm

and Niebruegge for the purpose of environment map-

ping [10]. The original formulation is based on carte-

sian coordinates. Here we give the formulation based on

cube face coordinates so that the standard cube map

functionality can be used:

f

(
u

v

)
=


tan−1

(
u√
2

)
sin−1

(
1√
3

)
tan−1(v·cos(tan−1(u)))

sin−1

(
1√

2+u2

)


f−1

(
u′

v′

)
=

 t

tan

(
v′ sin−1

(
1√

2+t2

))
cos(tan−1(t))

 ,with

t =
√
2 tan

(
u′ sin−1

(
1√
3

))
(4)

Similar to the Nowell method, the area and angular

distortions of the Continuous Cube are an improvement

over standard cube maps.

4.6 Unicube

The Unicube map was proposed by Ho et al. [12] as

an improvement over the previous Isocube map [30].

The following adjustment function was derived to im-

prove sampling uniformity compared to both the stan-

dard cube map and the Isocube map:

f(w) =
6

π
sin−1

(
w√

2w2 + 2

)
f−1(w′) =

sin
(
π
6w
′)√

1
2 − sin2

(
π
6w
′
) (5)

The Unicube method has low area distortions.

4.7 Everitt's Method

Zucker and Higashi [32] extracted the following adjust-

ment function from source code provided by Everitt [7]:

f(w) = w(c+ (1− c)|w|)

f−1(w′) = sgn(w′)

(
c−

√
c2 − 4(c− 1)|w′|
2(c− 1)

)
(6)

While Everitt originally used c = 1.5 and c = 1.375,

Zucker and Higashi determined numerically that c ≈
1.4511 is optimal in terms of area distortion RMSE min-

imization.

4.8 Sigmoid Adjustment (New Method)

The aforementioned adjustment functions and their in-

versions all take the shape of a sigmoid function [−1, 1]→
[−1, 1]. In order to identify adjustment function candi-

dates with favorable properties, we took di�erent ana-

lytically invertible sigmoid functions and introduced a

parameter c to each of them to tune their behaviour.

In particular, we tested algebraic sigmoid functions

f(w) =
w
√
1 + c2√

1 + c2w2
,

logistic sigmoid functions

f(w) =
2ec + 2

ec − 1

(
1

1 + e−cw
− 1

2

)
,

smoothstep functions

f(w) =
1
2 (3(cw + 1)2 − (cw + 1)3)− 1

1
2 (3(c+ 1)2 − (c+ 1)3)− 1

, c ∈ (0, 1],

the hyperbolic tangent function

f(w) =
tanh(cw)

tanh(c)
,

and the parameterized tangent function described in

Sec. 4.3.

Varying the parameter c can aim to minimize either

the maximum error or the RMSE of either area or an-

gular distortions. The resulting values for c will di�er;

see the �rst two entries in Tab. 2 for an example.

We minimize the maximum area distortion error,

thus improving the worst case behaviour of each map-

ping method. Note that all sigmoid function variations

have nearly the same maximum angular distortion er-

ror (reached at the cube face borders, where the dif-

ference to the standard cube map method reaches its

minimum), except for the smoothstep function, which is

worse. Therefore, trying to minimize this error does not

make sense. Note also that while the area and angular

RMSEs are not minimal when minimizing the maxi-

mum area distortion error, they are still in an accept-

able range.

As a result of our tests, we recommend the algebraic

sigmoid function with parameter c = 0.8700. See Sec. 5

for details. This function has the additional advantage

of being cheap to compute:

f(w) = w

√
1 + c2

1 + c2w2

f−1(w′) =
w′√

1 + c2 − c2w′2

(7)
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Method
Example cube
face at x=1

Example cube
face at z=1

DA (ideal: 1)
avg |max err | RMSE

DI (ideal: 1)
avg |max err | RMSE Remarks

Standard
cube map

1.153 | 1.710 | 0.464 1.281 | 0.730 | 0.324

QSC

No area distortions.
Lowest maximum an-
gular distortion.
Expensive.
C1 discontinuities at
face diagonals.

1.000 | 0.000 | 0.000 1.329 | 0.548 | 0.346

Tangent
Adjustment

Comparably low dis-
tortions.
Simple.

1.008 | 0.199 | 0.089 1.234 | 0.729 | 0.280

Nowell's
Method

Comparably low dis-
tortions.
Works on cartesian
coordinates.

1.001 | 0.205 | 0.034 1.235 | 0.727 | 0.295

Continuous
Cube

Comparably high
area distortions.
Expensive.

1.030 | 0.592 | 0.183 1.179 | 0.728 | 0.224

UniCube
Low area distortions.
High angular distor-
tion RMSE.

1.001 | 0.171 | 0.038 1.288 | 0.728 | 0.348

Everitt's
Method
with

c = 1.4511

Low area distortions.
High maximum angu-
lar distortion.

1.003 | 0.183 | 0.053 1.298 | 0.860 | 0.349

Table 1 Comparison of cube map variants proposed in the literature.

0.625 1

1 1.6

1.6

Fig. 2 Color map for DA (top) and DI (bottom) in Tabs. 1 and 2. Note that DI ≥ 1. Values outside the range displayed
here are clamped in Tabs. 1 and 2.
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Method
Example cube
face at x=1

Example cube
face at z=1

DA (ideal: 1)
avg |max err | RMSE

DI (ideal: 1)
avg |max err | RMSE Remarks

Tangent
Sigmoid
with

c = 1.1823
[32]

c chosen to mini-
mize area distortion
RMSE.

1.002 | 0.143 | 0.041 1.290 | 0.728 | 0.345

Tangent
Sigmoid
with

c = 1.1968

c chosen to minimize
the maximum area
distortion error.

1.002 | 0.138 | 0.041 1.295 | 0.728 | 0.351

Algebraic
Sigmoid
with

c = 0.8700
(recom-
mended
method)

Lowest maximum
area distortion error.
Simple and cheap
computation.

1.002 | 0.117 | 0.044 1.271 | 0.728 | 0.327

Logistic
Sigmoid
with

c = 1.9443

Comparable to alge-
braic adjustment.

1.003 | 0.119 | 0.055 1.257 | 0.728 | 0.314

Smoothstep
Sigmoid
with

c = 0.7507

Worst of the sigmoid
function candidates.

0.992 | 0.206 | 0.101 1.207 | 0.755 | 0.280

Hyperbolic
Tangent
Sigmoid
with

c = 0.9721

Comparable to alge-
braic adjustment.

1.003 | 0.119 | 0.055 1.257 | 0.728 | 0.314

Table 2 Comparison of parameterized sigmoid adjustment functions. The top row shows the tangent adjustment variant
proposed by Zucker and Higashi [32] (Sec. 4.3). The following rows show sigmoid function variations with parameter c chosen
to minimize the maximum area distortion error (Sec. 4.8).
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5 Evaluation

To analyse the area and angular distortions of all cube

map variants, we use the measures DA and DI [15]

derived from Tissot's Indicatrix [26]. The basic idea of

these measurements is that a map projection maps an

in�nitesimal circle on the sphere onto an in�nitesimal

ellipse on the map. From the semi-major axis a and

semi-minor axis b of this ellipse, several measurements

of projection quality can be derived, e.g. the local scale

factor s = ab which is equivalent to the determinant of

the Jacobian matrix.

DA =
ab

R
, R =

4
4π
6

=
6

π

DI =
a

b

(8)

R is the ratio between the area of a cube face and the

sixth part of the sphere surface area, and is used for

normalization. The optimal value for both DA and DI

is 1. Since a ≥ b, DI ≥ 1.

These two distortion measurements are color-coded

as shown in Fig. 2. Note that in Tabs. 1 and 2, values

outside the range covered by the color map are clamped.

The results of the distortion evaluations, along with

example maps, are listed in Tab. 1 (for all methods

previously proposed in the literature) and Tab. 2 (for all

tested alternative sigmoid functions). For the sigmoid

functions, we manually varied parameter c to minimize

the maximum area distortion.

The QSC method is area preserving and has the low-

est maximum angular distortion of all tested methods,

making it the method with the highest quality by a wide

margin. However, its complex and costly computations

limit its usefulness for interactive applications.

The sigmoid adjustment functions are simpler and

cheaper to compute than the alternative methods pro-

posed in the literature (with the exception of Everitt's

method), and they all achieve a lower maximum angu-

lar distortion error. They all perform similarly, with the

same maximum angular distortion error that is largely

independent of the parameter c, and comparable area

and angular distortions.

We recommend the algebraic sigmoid adjustment

function with parameter c = 0.87 since it is simple,

cheap to compute, and has the lowest maximum area

distortion error while both area and angular distortion

RMSE are in an acceptable range.

Furthermore, we tested the numerical accuracy of

consecutive forward and inverse transformation for each

point in a regular grid of size 512 × 512 representing

one cube face. Since all methods listed in this paper

have an analytical inverse, the distance between origi-

nal point and the result of consecutive transformation

is very small, in the order of 10−6 for single precision

�oating point, except for the Nowell method, where it

is in the order of 10−4.

6 Conclusion

This paper gives an overview of alternative cube map-

ping methods used in interactive Computer Graphics

applications. Most of the methods proposed in the lit-

erature, e.g. Continuous Cube and Unicube, are outper-

formed by simpler methods found via systematic eval-

uation of sigmoid functions, e.g. the algebraic sigmoid

function. The best performing mapping method is QSC,

which preserves area and additionally limits angular

distortions. Since its computations are rather complex

and costly, the sigmoid functions provide a good com-

promise for interactive applications. However, the ex-

act e�ects of di�erent cube map methods on rendering

speed and other system attributes depend on the appli-

cation area and need to be evaluated in the application

context.

Supplementary Material

The supplementary material includes C++ code imple-

menting all mapping methods, along with analysis code

that can be used to reproduce all results shown in this

paper.
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